Efficient Mendler-Style Lambda-Encodings in Cedille

نویسندگان

  • Denis Firsov
  • Richard Blair
  • Aaron Stump
چکیده

It is common to model inductive datatypes as least fixed points of functors. We show that within the Cedille type theory we can relax functoriality constraints and generically derive an induction principle for Mendler-style lambda-encoded inductive datatypes, which arise as least fixed points of covariant schemes where the morphism lifting is defined only on identities. Additionally, we implement a destructor for these lambda-encodings that runs in constant-time. As a result, we can define lambda-encoded natural numbers with an induction principle and a constant-time predecessor function so that the normal form of a numeral requires only linear space. The paper also includes several more advanced examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

[DRAFT] The Calculus of Dependent Lambda Eliminations∗

Modern constructive type theory is based on pure dependently typed lambda calculus, augmented with user-defined datatypes. This paper presents an alternative called the Calculus of Dependent Lambda Eliminations, based on pure lambda encodings with no auxiliary datatype system. New typing constructs are defined which enable induction, as well as large eliminations with lambda encodings. These co...

متن کامل

The calculus of dependent lambda eliminations

Modern constructive type theory is based on pure dependently typed lambda calculus, augmented with user-defined datatypes. This paper presents an alternative called the Calculus of Dependent Lambda Eliminations, based on pure lambda encodings with no auxiliary datatype system. New typing constructs are defined which enable induction, as well as large eliminations with lambda encodings. These co...

متن کامل

Map fusion for nested datatypes in intensional type theory

A definitional extension LNGMIt of the Calculus of Inductive Constructions (CIC), that underlies the proof assistant Coq, is presented that allows also to program with nested datatypes that are not legal data type definitions of CIC since they are “truly nested”. LNGMIt ensures termination of recursively defined functions that follow iteration schemes in the style of N. Mendler. Characteristica...

متن کامل

Mendler-Style Inductive Types, Categorically

We present a basis for a category-theoretic account of Mendler-style inductive types. The account is based on suitably defined concepts of Mendler-style algebra and algebra homomorphism; Mendler-style inductive types are identified with initial Mendler-style algebras. We use the identification to obtain a reduction of conventional inductive types to Mendler-style inductive types and a reduction...

متن کامل

Reasoning about modular datatypes with Mendler induction

In functional programming, datatypes à la carte provide a convenient modular representation of recursive datatypes, based on their initial algebra semantics. Unfortunately it is highly challenging to implement this technique in proof assistants that are based on type theory, like Coq. The reason is that it involves type definitions, such as those of type-level fixpoint operators, that are not s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018